WNE Linear Algebra

Final Exam

28 January 2020

Questions A

Question 1.

Is the matrix $A=\left[\begin{array}{cc}a^{2} & a \\ a & 2\end{array}\right]$ positive definite for all $a \in \mathbb{R}$?

Answer 1.

No, it is not. For $a=0$ the matrix

$$
A=\left[\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right]
$$

is not positive definite.

Question 2.

If $v, w \in, \mathbb{R}^{3}, v \neq \mathbf{0}$, is the image of vector $w \in \mathbb{R}^{3}$ under the (linear) orthogonal symmetry about the line $V=\operatorname{lin}(v)$ equal to

$$
S_{V}(w)=2 \frac{w \cdot v}{v \cdot v} v-w ?
$$

Answer 2.

Yes, it is. An orthogonal basis of $V=\operatorname{lin}(v)$ is the single vector $v \in V$, therefore

$$
P_{V}(w)=\frac{w \cdot v}{v \cdot v} v
$$

and (see Lecture 10)

$$
S_{V}(w)=2 P_{V}(w)-w
$$

which gives

$$
S_{V}(w)=2 \frac{w \cdot v}{v \cdot v} v-w
$$

Question 3.

If $A \in M(2 \times 2 ; \mathbb{R})$ and $A+A^{\top}=\mathbf{0}$, does it follow that $A^{3}+\left(A^{\top}\right)^{3}=\mathbf{0}$?

Answer 3.

Yes, it does. If $A^{\top}=-A$ then

$$
A^{3}+\left(A^{\top}\right)^{3}=A^{3}+(-A)^{3}=A^{3}-A^{3}=\mathbf{0} .
$$

Question 4.

Is it possible that $A, B \in M(2 \times 2 ; \mathbb{R})$, $\operatorname{det} A \neq 0$, $\operatorname{det} B \neq 0$ but $\operatorname{det}(A+B)=0$?

Answer 4.

Yes, it is.

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad B=\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right], \quad A+B=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .
$$

Question 5.

Does there exist matrix $A \in(100 \times 3 ; \mathbb{R})$ with pairwise different rows such that the dimension of the set of all solutions of the equation $A x=\mathbf{0}$ is equal to 1 ?

Answer 5.

Yes, it does.

$$
A=\left[\begin{array}{ccc}
1 & 1 & 2 \\
1 & 1 & 1 \\
2 & 2 & 2 \\
\vdots & \ddots & \vdots \\
99 & 99 & 99
\end{array}\right]
$$

Question 6.
Are the affine subspaces $E, H \subset \mathbb{R}^{3}$ given by

$$
\begin{gathered}
E: x_{1}+2 x_{2}-3 x_{3}=2, \\
H=(1,2,1)+\operatorname{lin}((1,2,-3)),
\end{gathered}
$$

perpendicular?

Answer 6.

Yes, they are. The subspace E has a parametrization

$$
\left(-2 x_{2}+3 x_{3}+2, x_{2}, x_{3}\right)=(2,0,0)+x_{2}(-2,1,0)+x_{3}(3,0,1), \quad x_{2}, x_{3} \in \mathbb{R}
$$

that is

$$
E=(2,0,0)+\operatorname{lin}(((-2,1,0),(3,0,1))
$$

The directions

$$
\begin{gathered}
\vec{E}=\operatorname{lin}(((-2,1,0),(3,0,1)) \\
\vec{H}=\operatorname{lin}((1,2,-3))
\end{gathered}
$$

are perpendicular because

$$
(1,2,-3) \cdot(-2,1,0)=(1,2,-3) \cdot(3,0,1)=0
$$

Questions B

Question 1.

Is the matrix $A=\left[\begin{array}{cc}-2 & a \\ a & -a^{2}\end{array}\right]$ negative definite for all $a \in \mathbb{R}$?

Answer 1.

No, it is not. For $a=0$ the matrix

$$
A=\left[\begin{array}{rr}
-2 & 0 \\
0 & 0
\end{array}\right]
$$

is not negative definite.

Question 2.

If $v, w \in \mathbb{R}^{3},\|v\|=1$, is the image of vector $w \in \mathbb{R}^{3}$ under the (linear) orthogonal projection on the line $V=\operatorname{lin}(v)$ equal to

$$
P_{V}(w)=(w \cdot v) v ?
$$

Answer 2.

Yes, it is. An orthonormal basis of $V=\operatorname{lin}(v)$ is the single vector $v \in V$, therefore

$$
P_{V}(w)=\frac{w \cdot v}{v \cdot v} v
$$

and

$$
1=\|v\|^{2}=v \cdot v
$$

which gives

$$
P_{V}(w)=(w \cdot v) v
$$

Question 3.

If $A \in M(2 \times 2 ; \mathbb{R})$ and $A+A^{\top}=\mathbf{0}$, does it follow that $A^{2}+\left(A^{\top}\right)^{2}=\mathbf{0}$?

Answer 3.

Answer 3.
No, it does not. If $A=\left[\begin{array}{rr}0 & -a \\ a & 0\end{array}\right]$ then $A+A^{\top}=\mathbf{0}$, but

$$
A^{2}+\left(A^{\top}\right)^{2}=A^{2}+(-A)^{2}=2 A^{2}=\left[\begin{array}{cc}
0 & -a^{2} \\
-a^{2} & 0
\end{array}\right]
$$

which is in general not equal to $\mathbf{0}$.

Question 4.

Is it possible that $A, B \in M(2 \times 2 ; \mathbb{R})$, $\operatorname{det} A=0$, $\operatorname{det} B=0$ but $\operatorname{det}(A+B) \neq 0$?

Answer 4.

Yes, it is.

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad B=\left[\begin{array}{rr}
0 & 0 \\
0 & -1
\end{array}\right], \quad A+B=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Question 5.

Does there exist matrix $A \in(100 \times 3 ; \mathbb{R})$ with pairwise different rows such that the dimension of the set of all solutions of the equation $A x=\mathbf{0}$ is equal to 2 ?

Answer 5.

Yes, it does.

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 2 & 2 \\
\vdots & \ddots & \vdots \\
99 & 99 & 99 \\
100 & 100 & 100
\end{array}\right]
$$

Question 6.

Are the affine subspaces $E, H \subset \mathbb{R}^{3}$ given by

$$
\begin{gathered}
E: x_{1}+x_{2}-2 x_{3}=5 \\
H=(1,-1,0)+\operatorname{lin}((1,1,1))
\end{gathered}
$$

perpendicular?

Answer 6.

No, they are not. The subspace E has a parametrization

$$
\left(-x_{2}+2 x_{3}+5, x_{2}, x_{3}\right)=(5,0,0)+x_{2}(-1,1,0)+x_{3}(2,0,1), \quad x_{2}, x_{3} \in \mathbb{R}
$$

that is

$$
E=(5,0,0)+\operatorname{lin}(((-1,1,0),(2,0,1))
$$

The directions

$$
\begin{gathered}
\vec{E}=\operatorname{lin}(((-1,1,0),(2,0,1)) \\
\vec{H}=\operatorname{lin}((1,1,1))
\end{gathered}
$$

are not perpendicular because, for example

$$
(1,1,1) \cdot(2,0,1)=3 \neq 0
$$

